skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Jieya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Research on hurricane impacts in Florida’s coastal regions has been extensive, yet there remains a gap in comparing the effects and potential damage of different hurricanes within the same geographical area. Additionally, there is a need for reliable discussions on how variations in storm surges during these events influence evacuation accessibility to hurricane shelters. This is especially significant for rural areas with a vast number of aging populations, whose evacuation may require extra attention due to their special needs (i.e., access and functional needs). Therefore, this study aims to address this gap by conducting a comparative assessment of storm surge impacts on the evacuation accessibility of southwest Florida communities (e.g., Lee and Collier Counties) affected by two significant hurricanes: Irma in 2017 and Ian in 2022. Utilizing the floating catchment area method and examining Replica’s OD Matrix data with Geographical Information Systems (GISs)-based technical tools, this research seeks to provide insights into the effectiveness of evacuation plans and identify areas that need enhancements for special needs sheltering. By highlighting the differential impacts of storm surges on evacuation accessibility between these two hurricanes, this assessment contributes to refining disaster risk reduction strategies and has the potential to inform decision-making processes for mitigating the impacts of future coastal hazards. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. The growing complexity of natural disasters, intensified by climate change, has amplified the challenges of managing emergency shelter demand. Accurate shelter demand forecasting is crucial to optimize resource allocation, prevent overcrowding, and ensure evacuee safety, particularly during concurrent disasters like hurricanes and pandemics. Real-time decision-making during evacuations remains a significant challenge due to dynamic evacuation behaviors and evolving disaster conditions. This study introduces a spatiotemporal modeling framework that leverages connected vehicle data to predict shelter demand using data collected during Hurricane Sally (September 2020) across Santa Rosa, Escambia, and Okaloosa counties in Florida, USA. Using Generalized Additive Models (GAMs) with spatial and temporal smoothing, integrated with GIS tools, the framework captures non-linear evacuation patterns and predicts shelter demand. The GAM outperformed the baseline Generalized Linear Model (GLM), achieving a Root Mean Square Error (RMSE) of 6.7791 and a correlation coefficient (CORR) of 0.8593 for shelters on training data, compared to the GLM’s RMSE of 12.9735 and CORR of 0.1760. For lodging facilities, the GAM achieved an RMSE of 4.0368 and CORR of 0.5485, improving upon the GLM’s RMSE of 4.6103 and CORR of 0.2897. While test data showed moderate declines in performance, the GAM consistently offered more accurate and interpretable results across both facility types. This integration of connected vehicle data with spatiotemporal modeling enables real-time insights into evacuation dynamics. Visualization outputs, like spatial heat maps, provide actionable data for emergency planners to allocate resources efficiently, enhancing disaster resilience and public safety during complex emergencies. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Hurricane-induced storm surge and flooding often lead to the closures of evacuation routes, which can be disruptive for the victims trying to leave the impacted region. This problem becomes even more challenging when we consider the impact of sea level rise that happens due to global warming and other climate-related factors. As such, hurricane-induced storm surge elevations would increase nonlinearly when sea level rise lifts, flooding access to highways and bridge entrances, thereby reducing accessibility for affected census block groups to evacuate to hurricane shelters during hurricane landfall. This happened with the Category 5 Hurricane Michael which swept the east coast of Northwest Florida with long-lasting damage and impact on local communities and infrastructure. In this paper, we propose an integrated methodology that utilizes both sea level rise (SLR) scenario-informed storm surge simulations and floating catchment area models built in Geographical Information Systems (GIS). First, we set up sea level rise scenarios of 0, 0.5, 1, and 1.5 m with a focus on Hurricane Michael’s impact that led to the development of storm surge models. Second, these storm surge simulation outputs are fed into ArcGIS and floating catchment area-based scenarios are created to study the accessibility of shelters. Findings indicate that rural areas lost accessibility faster than urban areas due to a variety of factors including shelter distributions, and roadway closures as spatial accessibility to shelters for offshore populations was rapidly diminishing. We also observed that as inundation level increases, urban census block groups that are closer to the shelters get extremely high accessibility scores through FCA calculations compared to the other block groups. Results of this study could guide and help revise existing strategies for designing emergency response plans and update resilience action policies 
    more » « less
  4. Hurricane-induced storm surge and flooding often lead to the closures of evacuation routes, which can be disruptive for the victims trying to leave the impacted region. This problem becomes even more challenging when we consider the impact of sea level rise that happens due to global warming and other climate-related factors. As such, hurricane-induced storm surge elevations would increase nonlinearly when sea level rise lifts, flooding access to highways and bridge entrances, thereby reducing accessibility for affected census block groups to evacuate to hurricane shelters during hurricane landfall. This happened with the Category 5 Hurricane Michael which swept the east coast of Northwest Florida with long-lasting damage and impact on local communities and infrastructure. In this paper, we propose an integrated methodology that utilizes both sea level rise (SLR) scenario-informed storm surge simulations and floating catchment area models built in Geographical Information Systems (GIS). First, we set up sea level rise scenarios of 0, 0.5, 1, and 1.5 m with a focus on Hurricane Michael’s impact that led to the development of storm surge models. Second, these storm surge simulation outputs are fed into ArcGIS and floating catchment area-based scenarios are created to study the accessibility of shelters. Findings indicate that rural areas lost accessibility faster than urban areas due to a variety of factors including shelter distributions, and roadway closures as spatial accessibility to shelters for offshore populations was rapidly diminishing. We also observed that as inundation level increases, urban census block groups that are closer to the shelters get extremely high accessibility scores through FCA calculations compared to the other block groups. Results of this study could guide and help revise existing strategies for designing emergency response plans and update resilience action policies. 
    more » « less
  5. Hurricane Irma, in 2017, made an unusual landfall in South Florida and the unpredictability of the hurricane’s path challenged the evacuation process seriously and left many evacuees clueless. It was likely to hit Southeast Florida but suddenly shifted its path to the west coast of the peninsula, where the evacuation process had to change immediately without any time for individual decision-making. As such, this study aimed to develop a methodology to integrate evacuation and storm surge modeling with a case study analysis of Irma hitting Southeast Florida. For this purpose, a coupled storm surge and wave finite element model (ADCIRC+SWAN) was used to determine the inundation zones and roadways with higher inundation risk in Broward, Miami-Dade, and Palm Beach counties in Southeast Florida. This was fed into the evacuation modeling to estimate the regional clearance times and shelter availability in the selected counties. Findings show that it takes approximately three days to safely evacuate the populations in the study area. Modeling such integrated simulations before the hurricane hit the state could provide the information people in hurricane-prone areas need to decide to evacuate or not before the mandatory evacuation order is given. 
    more » « less